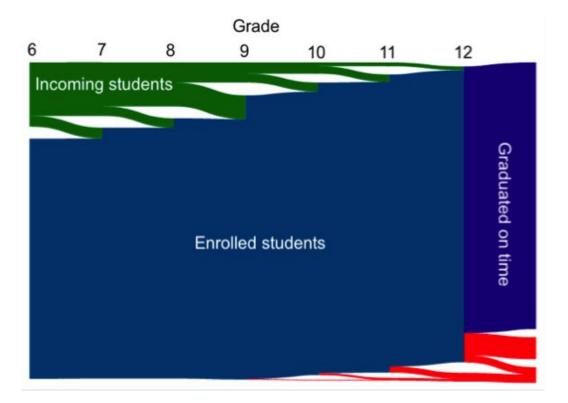


Education

How do you know which students are at risk of going off track BEFORE they're off track?

- Identify risk factors
- Build a model to predict status using available data
- Apply the model to student cohorts

How does this question apply to cities?


Community interest in education

- Education is key to a city's economic health and intervention helps increase economic potential in the aggregate
- At-risk students may interact with other city services like parks and recreation, social services, or public safety
- Cities can partner in developing intervention strategies through a variety of service areas to benefit mutual interests

Apply a risk model to	
other service areas	

- Use data in other service areas to build a "risk model"
 - Combine education data with data from other service areas to target services

The role of data

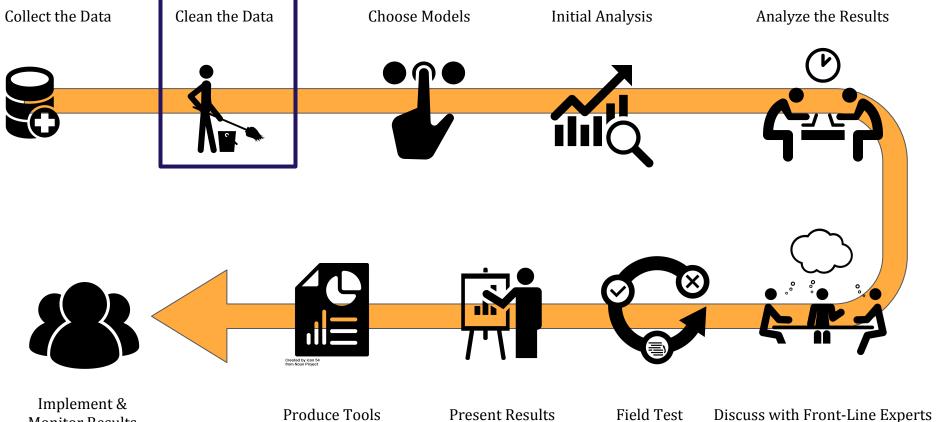
12% of students do not graduate on time

- Individual longitudinal data (over 4-5 years)
 - Demographics
 - Performance (grades and test scores)
 - \circ Attendance
- Repeated for each cohort
- Data are inherently dirty and need a lot of preparation for analysis

The role of technology

What technology was collecting and storing data?

What was used for analysis and info sharing?



Enterprise Data Warehouse

The methodology

Monitor Results

Produce Tools

Present Results

The role of people

The Students	The subject of the data in this case - the district has a large volume of data about each individual student
The Teacher	Has contextual information on students that may not show up in the data
The Central Office	Owns the data and tries to combine it with contextual knowledge on a scalable level across the district
The Superintendent	Leads efforts from the top on the importance of identifying at-risk students
The Partners	Outside partner to help develop the machine learning models, run the analysis, and determine model fit
The Policy Drivers	Determine the applicability of a variety of models and determine how it will be put in place in practice

Summary of Key Insights and Replication Considerations

- **Data readiness is key** collection, definitions, documentation, and cleaning are all key steps that precede any sort of modeling
- **Cities often don't control, but** <u>can</u> **influence education** think about what programs and services that cities influence that interact with education and try to integrate them into school district efforts where possible
- **Many risk-based problems are similar** applying a machine learning model from education may make sense in another area, so don't ignore efforts
- **Provide space for analysis** while partners may provide much of the analysis, district and city leaders need reserve time and resources for staff to work on analytical projects

To learn more about this project

Rayid Ghani rayid@uchicago.edu

University of Chicago - Data Science for Social Good http://dssg.uchicago.edu/

Your next station is @<u><u>L</u>LLLL</u> GovEx

